Effects of repeatability measures on results of fMRI sICA: A study on simulated and real resting-state effects

نویسندگان

  • Jukka J. Remes
  • Tuomo Starck
  • Juha Nikkinen
  • Esa Ollila
  • Christian F. Beckmann
  • Osmo Tervonen
  • Vesa Kiviniemi
  • Olli Silvén
چکیده

Spatial independent components analysis (sICA) has become a widely applied data-driven method for fMRI data, especially for resting-state studies. These sICA approaches are often based on iterative estimation algorithms and there are concerns about accuracy due to noise. Repeatability measures such as ICASSO, RAICAR and ARABICA have been introduced as remedies but information on their effects on estimates is limited. The contribution of this study was to provide more of such information and test if the repeatability analyses are necessary. We compared FastICA-based ordinary and repeatability approaches concerning mixing vector estimates. Comparisons included original FastICA, FSL4 Melodic FastICA and original and modified ICASSO. The effects of bootstrapping and convergence threshold were evaluated. The results show that there is only moderate improvement due to repeatability measures and only in the bootstrapping case. Bootstrapping attenuated power from time courses of resting-state network related ICs at frequencies higher than 0.1 Hz and made subsets of low frequency oscillations more emphasized IC-wise. The convergence threshold did not have a significant role concerning the accuracy of estimates. The performance results suggest that repeatability measures or strict converge criteria might not be needed in sICA analyses of fMRI data. Consequently, the results in existing sICA fMRI literature are probably valid in this sense. A decreased accuracy of original bootstrapping ICASSO was observed and corrected by using centrotype mixing estimates but the results warrant for thorough evaluations of data-driven methods in general. Also, given the fMRI-specific considerations, further development of sICA methods is strongly encouraged.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Thermo-Elastic Analysis of Non-Uniform Functionally Graded Circular Plate Resting on a Gradient Elastic Foundation

Present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (FG) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. The plate is coupled by an elastic medium which is simulated as a Winkler- Pasternak foundation with gradient coefficients in the radial and circumferential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 2011